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Abstract 
Multimodal large language models (MLLMs) provide new opportu-
nities for blind and low vision (BLV) people to access visual informa-
tion in their daily lives. However, these models often produce errors 
that are difficult to detect without sight, posing safety and social 
risks in scenarios from medication identification to outfit selection. 
While BLV MLLM users use creative workarounds such as cross-
checking between tools and consulting sighted individuals, these 
approaches are often time-consuming and impractical. We explore 
how systematically surfacing variations across multiple MLLM re-
sponses can support BLV users to detect unreliable information 
without visually inspecting the image. We contribute a design space 
for eliciting and presenting variations in MLLM descriptions, a pro-
totype system implementing three variation presentation styles, 
and findings from a user study with 15 BLV participants. Our results 
demonstrate that presenting variations significantly increases users’ 
ability to identify unreliable claims (by 4.9x using our approach com-
pared to single descriptions) and significantly decreases perceived 
reliability of MLLM responses. 14 of 15 participants preferred see-
ing variations of MLLM responses over a single description, and all 
expressed interest in using our system for tasks from understanding 
a tornado’s path to posting an image on social media. 

CCS Concepts 
• Human-centered computing → Accessibility design and 
evaluation methods; Accessibility systems and tools. 
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1 Introduction 
Recent progress in generative AI including multimodal large lan-
guage models (MLLMs) provides a transformative opportunity for 
millions of blind and low vision (BLV) people to access both digital 
and real-world visual information [12, 35, 77]. MLLMs are deep 
learning algorithms that can process and generate multiple types of 
content, including text, images, audio, and video [78]. BLV people 
can now use MLLMs through services such as Be My AI [2], Seeing 
AI [30], and Envision [3] to support daily activities such as explor-
ing new spaces [24, 50], reading informative charts and diagrams, 
interpreting images on social media posts [19], or creating visual 
art [41]. MLLMs provide descriptions faster than human-powered 
access tools [5, 6, 22] and with more detail than traditional image 
captioning techniques [42]. 

While MLLMs produce fluent and persuasive responses, their 
responses can be factually incorrect or misleading [42]. For example, 
MLLMs erroneously fabricate content that is not in the image (e.g., 
state an empty frame contains a family picture), misinterpret content 
that is in the image (e.g., mistaking a cleaning product for shampoo, 
or “6mg” for “8mg” ), or omit important content (e.g., omitting a 
warning label from a medication description). MLLMs also provide 
overly certain responses for ambiguous queries. For example, a 
model may confidently report that an outfit matches and is business-
casual when humans would disagree. However, it can be challenging 
for BLV MLLM users to detect errors or subtle model biases without 
visually comparing the image to the model response. 

BLV MLLM users have thus developed creative strategies to 
check AI-generated image descriptions such as cross-checking de-
scriptions across multiple tools that use different models, using 
other senses to verify the response in real-world environments, 
and asking sighted people for verification [13]. However, check-
ing across tools or coordinating with sighted people can be time-
consuming, and non-visual senses can primarily support users 
in real-world scenarios. Prior work has supported BLV users to 
check the quality of prior AI-generated descriptions with inter-
active spatial descriptions [51, 61] or multiple answers to similar 
questions [41] that can incidentally reveal model inconsistencies. 
For single descriptions, prior work used the probability of a model 
response to provide its confidence to the user via natural language 
or numerical framing (e.g., “there’s a small chance I could be wrong...”, 
“there’s a 20% chance I could be wrong...” ) [58]. However, this ap-
proach used explicit model confidence scores that are unavailable 
in “black-box” MLLMs, it cannot address the mixture of both reli-
able (e.g., “a bar chart” ) and unreliable information (e.g., “the highest 
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price is $284,359”, “the chart looks polished” ) contained in paragraph-
long MLLM descriptions [42]. While BLV users want to be able 
to assess MLLM responses, and have developed practices of com-
paring multiple AI-generated responses to do so, no prior work 
supports BLV users in efficiently generating and comparing MLLM 
responses. 

Our work aims to support BLV users to detect unreliable infor-
mation within long-form MLLM responses and foster appropriate 
perceived reliability of MLLM answers. Our core approach, inspired 
by BLV users’ existing practice of checking multiple tools [13] and 
prior literature suggesting that sharing variations can calibrate 
trust for LLM responses [52], is to make it easier for BLV users to 
generate and compare variations across model responses to surface 
unreliable visual information. We outline a design space for elicit-
ing and displaying variations in responses produced by black-box 
MLLMs to support users in understanding the range of possible 
model responses. From this design space, we prototype three pre-
sentation styles: a list of multiple descriptions, a variation-aware 
description that integrates variations, and a variation summary 
that explicitly highlights agreements, disagreements, and unique 
mentions. 

To evaluate the effectiveness of surfacing variations in LLM 
responses, we conducted a controlled user study with 15 BLV par-
ticipants who regularly used MLLM descriptions comparing a single 
description, with a list of multiple descriptions, and our approach 
(a combination of the variation summary and variation-aware de-
scription). Our study demonstrates that presenting variations sig-
nificantly increases users’ ability to identify unreliable claims (by 
4.9x using our approach compared to a single description) and 
significantly decreases perceived reliability of MLLM-generated 
image descriptions. Participants preferred our aggregated varia-
tion approaches over traditional multiple description lists or single 
descriptions, with 11 of 15 ranking our variation summary in partic-
ular as their favorite option (over the variation-aware descriptions, 
list of variations, and single descriptions). All participants expressed 
interest in using our variation surfacing prototype for future tasks 
ranging from high-stakes scenarios (e.g., tracking an incoming tor-
nado) to obtaining subjective critiques (e.g., to post an image on 
social media). 

In summary, we contribute: 
• A design space for surfacing variations in MLLM-generated 
image descriptions informed by prior literature 

• A prototype system that automatically generates and presents 
variations in MLLM responses in three different presentation 
styles tailored to BLV users’ needs 

• Empirical findings demonstrating that surfacing variations 
significantly improves BLV users’ ability to identify unre-
liable information in MLLM responses and decreases their 
perceived reliability of MLLM responses 

2 Related Work 

2.1 Visual Access Technology 
BLV people use visual assistive technologies to understand visual 
content in both the real and digital worlds [11]. Traditional visual 
assistance (e.g., Be My Eyes [6], VizWiz [22], Aira [5]) employ 
sighted human assistants to describe visual content that the user is 

showing on their camera, but human assistance is not always avail-
able [17]. As a result, AI-powered, particularly MLLM-powered (e.g. 
Be My AI, Meta RayBan), access technologies has become scalable, 
on-demand alternatives to traditional ones. BLV people use such 
tools to identify specific objects, build an understanding of scenery, 
read text and numbers, and identify object locations [24, 26, 35, 37]. 
Recent MLLMs can generate long-form answers that include ex-
planations, context, and additional details in response to visual 
queries [42]. While this nuanced information can help users better 
understand visual content, the length of these descriptions poses ex-
tra challenges. First, much like human-written descriptions that can 
vary in focus and subjective opinions [22, 42], MLLMs also present 
information from a specific perspective based on what they choose 
to describe and how they present it. Second, these detailed outputs 
often contain small, objective errors known as hallucinations that 
can be difficult to detect in long-form descriptions, especially when 
they are otherwise correct (e.g., getting a single number on a chart 
wrong). Prior work on traditional captioning models shows that 
BLV people tend to overly trust AI-generated image descriptions on 
social media [58, 60] and can only identify about half of the errors 
when using object detection [40]. MLLM-generated image descrip-
tions are particularly prone to give fluent but incorrect answers, 
and BLV users are more inclined to perceive such MLLM responses 
as plausible compared than sighted evaluators [42]. In this work, 
we designed interventions aimed at calibrating BLV users’ trust in 
long-form MLLM-generated image descriptions. 

2.2 Visual Description Verification Strategies 
for BLV People 

BLV people are early adopters of AI technologies [21], but assessing 
visual descriptions’ correctness remains challenging, as they cannot 
directly visually verify the descriptions against the image. That said, 
BLV people have developed multiple verification workarounds in 
different scenarios. As BLV people use AI-powered visual access 
tools in everyday tasks, they build up an understanding of errors 
that tools are prone to make and then check for common object 
detection errors [13, 35, 43]. Incongruent contextual cues can also 
suggest potential errors in the description [10, 35]. For example, 
when “accordion” appears in a kitchen scene, BLV people recognize 
it as an error [62]. BLV people often cross-check inconsistency in 
image descriptions by employing other senses, retaking photos 
from different angles or with altered backgrounds, or running the 
same image through multiple apps to compare results and iden-
tify inconsistencies [13, 40, 41]. BLV people often choose to check 
with sighted people in high-stakes tasks or scenarios that require 
accuracy and security [13, 81]. 

Prior work supports BLV users in verifying and contesting AI-
generated outcomes by eliciting information via question answer-
ing [25, 41] or multi-layered descriptions to enable assessing vi-
sual content by checking congruency and consistency [51, 61, 62]. 
GenAssist and EditScribe both use variations in generated image 
descriptions to support BLV creators assessing generated images, 
such work does not address that the image descriptions themselves 
may contain errors though repeated descriptions inadvertently 
surfaced consistency errors [41]. Multi-layered and spatial descrip-
tions [51, 61, 62] provide opportunities to explore images and videos 
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spatially and/or hierarchically and thus support BLV users to un-
cover consistency and incongruence issues in descriptions. Building 
upon the existing visual description verification practices of BLV 
people, our work reveals variations in multiple MLLM-generated 
image descriptions from different sources. The inconsistencies in 
MLLM responses can serve as indicators of potential errors that 
raise the skepticism of BLV users in MLLM-generated image de-
scriptions. 

2.3 Variations in Large Language Model Outputs 
Prior work has explored surfacing variations in large language 
model (LLM) responses primarily for sighted people. Similar to 
MLLMs, LLMs can generate various outputs given the same input 
by sampling from a probability distribution of learned words and 
phrases. Their stochastic characteristics sometimes lead to incon-
sistent outputs that negatively impacts the safe use of LLMs [14]. 
While prior machine learning research attempts to develop meth-
ods to evaluate [16, 31, 66, 69, 79] and reduce these inconsistencies 
[29, 47, 74], variations across outputs cannot be eliminated due to 
the probabilistic nature of LLMs. Therefore, effectively communi-
cating variations and uncertainty to users is critical for safe use. 
Presenting only a single polished and confident output can mislead 
users to over-rely on the system and ignore potential errors so 
prior work work shows that providing explanations [72], token 
probabilities [71], and multiple variations [52] can expose AI limi-
tations and mitigate overreliance. While prior work has revealed 
token probabilities directly for code generation [71], Kuhn et al. 
[49] demonstrate that clustering semantically similar responses 
provides a more meaningful measurement of uncertainty as oppose 
to traditional metrics like log probability, which often fail to capture 
semantic nuances [45] (e.g., articles like “the” and “a” may recieve 
high probability but they are not semantically meaningful). 

HCI researchers have thus developed interfaces to visualize these 
output variations to help users better understand and assess the gen-
erated content. Researchers have introduced interactive diagrams 
[15, 44, 68], text renderings [27, 36], and multi-output visualizations 
[33, 67] to make variations more evident. However, these interfaces 
are designed for sighted users first and thus represent variations 
via visualization techniques like saliency, color codes, placement, 
and interactive graphics, which are inaccessible to BLV users. For 
example, Luminate [67] displays generated variations in an interac-
tive graph visualization. In this work, we draw on such prior work 
to design, develop, and evaluate approaches for screen reader users 
to surface such variations in MLLM rather than LLM responses. 

3 Prototype Design and Development 
We aimed to build a system to support BLV users in identifying 
unreliable information in MLLM-generated responses and assessing 
model reliability. Towards this goal, we share three design goals 
based on prior work, create a design space of how systems may 
support these goals, and share our prototype that instantiates sev-
eral features of our design space: 

DG1: Surface variations in MLLM responses. BLV users cur-
rently check model responses across multiple AI tools to assess 
response accuracy [13]. Informed by their current practice, and 

prior work that indicates exposing sighted users to multiple LLM 
responses reduces trust [52], we seek to support BLV users easily 
surfacing and comparing multiple responses from MLLMs at once. 

DG2: Support efficient comprehension of variations. One 
approach to surface variations is to simply run an MLLM multiple 
times then list out all of the variations (e.g., as prior work explored 
for LLMs [27]). However, modern MLLM image descriptions and 
visual question answers are sentences to paragraphs long [42] such 
that it can be cognitively demanding to read and compare varia-
tions of the same responses, especially for screen reader users who 
read the responses linearly. Thus, we seek to create an interface 
that supports users efficiently understanding variations in model 
responses. 

DG3: Support personalized display of variations. The experi-
ence of disability is highly individual and thus accessible technolo-
gies must be designed with individual differences in mind [39]. We 
seek to support users to customize our tool to meet their needs. 

3.1 Surfacing MLLM Variations: A Design Space 
We outline opportunities for systems to support efficiently surfacing 
MLLM variations in a design space informed by prior work (Table 1) 
and explain the dimensions of potential support below. For each 
dimension, we share what options we included in our prototype 
for surfacing MLLM variations. 

3.1.1 Elicitation of Variants. Variation in MLLM responses to im-
age and prompt pairs arises from a variety of sources. First, MLLMs 
are non-deterministic such that there is built in randomness in 
responses with the same model and a fixed input. Thus, one way to 
elicit variation is simply to run the same model multiple times with 
the same input (i.e., to run multiple trials). Second, model inter-
pretations of images are sensitive to prompt variations such as in-
structing the model to not hallucinate [42], providing a persona [18], 
or simply paraphrasing the prompt [66]. For example, Gemini’s 
response shifted from saying “the clothes don’t really match” to 
describing the outfit as “a fairly standard casual combination” when 
the question changed from “Do they match?” to “Do they go well 
with each other?” Thus, we can elicit variations by varying the 
prompts between trials. Finally, different models have different 
strengths, weaknesses, and patterns of responses (e.g., using hedg-
ing or straightforward language [42]) thus we can elicit variations 
by running multiple models. Our prototype provides all three op-
tions for elicitation and allows users to customize their elicitation 
strategy. As a default, we use 3 models with 3 trials all with the 
same prompt to identify meaningful variations without introducing 
potential confusion from prompt changes or overwhelm from too 
many responses. 

3.1.2 Comparison Support. To support people comparing vari-
ations, the simplest approach is to list various outputs side by 
side [33, 52, 63] which provides users full knowledge of the varia-
tions but has high cognitive demand to remember the variations 
among responses. Another approach is to align variations of MLLM 
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Dimension Alternatives 

Elicitation of Variants Trials Prompts Models Images 
Comparison Support List Variation-aware description Variation Summary 
Comparison Granularity Words Atomic facts Sentences Responses 
Support Indicator None Percentage Language Source 
Provenance Indicator None Trials Prompts Models 
Modality Text Sound Visualization Haptics 

Table 1: Design space of surfacing MLLM variations. Colored squares indicate options featured by our prototype. 

responses to a single response that we call a variation-aware de-
scription (e.g., “the chair is red” becomes “the chair is red, pink, or 
magenta”). Prior work explored visualizing such aligned responses 
for sighted users evaluating LLM responses [27]. Aligning responses 
makes it possible for users to understand the content of the im-
age while alerting them to the parts of the description that may 
be unreliable. However, this approach lengthens the primary de-
scription and thus may make it more difficult to understand the 
image as a whole. A final approach is to create a variation sum-
mary that highlights the similarities (e.g., “all models describe a 
cat riding a bike” ) and differences (e.g., “GPT-4V describes the cat as 
longhair whereas Gemini says the cat is short-hair” ) between MLLM 
responses. Prior work explored a similar approach to alert BLV 
users to variations in generated images [41]. This approach high-
lights variations most directly, but loses similarity to the original 
response. We provide all three options in our prototype. 

3.1.3 Comparison Granularity. To compare responses, different 
levels of granularity may be valuable depending on the task. For 
example, if the user is trying to compare the output of two MLLM 
responses reading text to memorize a written poem, they may want 
word-level comparison such that they can detect any word that 
varies between the two responses. On the other end of the spec-
trum, if a BLV user wants to create alt text for their travel photo 
they may want to read the full responses and select the best one 
response-level. We also explore two additional points on the spec-
trum: sentence-level comparison as it provides a more manageable 
length but often contain multiple pieces of information such that 
they can be difficult to align between responses, and atomic facts 
or self-contained units of information (e.g. “a short-hair cat” ). In 
our prototype, we use full responses for the list of multiple de-
scriptions and atomic facts for the variation-aware description and 
variation summary to surface content differences rather than lexical 
differences in responses. 

3.1.4 Support indicator. When we present variations to users (e.g., 
“the chair is red, pink, or magenta.”), we may surface only unique 
variations without indicating level of agreement ( ) or users 
may want to know to what extent other models agree with the state

none
-

ment: “the chair is red (90% of responses), pink (6% of responses), 
or magenta (4% of responses).” Similar to how prior work presented 
model confidence [58], we can present agreement with percent-
age, natural language indicators (e.g., “well-supported”), or simple 
counts of source. We provide all options in our prototype. As a 
default, we use counts. 

m MLLMs 
GPT-4o  
Gemini 1.5 pro  
Claude 3.7 Sonnet 

n Sample SizePrompt 

Image 

Paraphrased 
Prompts m×n Descriptions 

Group Facts 

Paragraph Formation 

Annotate Sources 

List of Multiple 
Descriptions 

Variation-aware 
Description 

Variation 
 Summary 

GPT-4o Gemini 2.5 Pro 

GPT-4o 

Figure 1: Automatic variation-aware description and varia-
tion summary generation pipeline. 

3.1.5 Provenance indicator. Users may want to know what trial, 
prompt, or model produced each variation. For example, we may 
say “the chair is red (GPT-4V) or pink (Gemini)”. Our prototype 
includes the model provenance indicator as models may be particu-
larly useful for supporting users assessing model reliability. 

3.1.6 Modality. Our prototype uses text as the primary modality 
for accessing variations to support efficient screen reader access, 
while prior work designing variations for sighted people primarily 
uses text responses coupled with visualizations to show variation. 
Future work could explore using sound (e.g., lower volume for 
less supported variants) or even more futuristic modalities such as 
haptics to support variation assessment. 

3.2 Prototype 
To gather BLV people’s perceptions of variations, we develop a 
study prototype that automatically aligns and presents variations 
guided by our design choices and accessibility considerations for 
generative AI systems [59, 76]. 

3.2.1 Interface. Users can upload an image from either their photo 
albums or a webpage and enter a prompt to query the models on 
our interface. They may select one or more of the three available 
models and set query numbers for each model. They can also choose 
to use either the original prompt or paraphrased versions. For our 
study, we query each model 3 times per image using the original 
prompt, yielding a total of 9 descriptions per image. We choose 
this number because it can harness intra-model and inter-model 
variations while balancing computational costs and minimizing the 
cognitive load for participants reading the descriptions. The total 
number of generated responses also aligns with prior research of 
similar tasks [33]. 

We show the three variation comparison support styles — list of 
multiple descriptions, variation-aware descriptions, and variation 
summaries (Figure 2). The list of multiple descriptions displays 
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Describe the room setting.   
Does this wall setting look okay?
 

General Room Description   
The room is a living space, possibly a bedroom or den. [...]

 

Wall and Major Furnitur 
 Wall: The walls are soft green or light gray. They have a textured finish, 

which might be mottled or rag-rolled.[... 
 Main Furniture: The room contains a bed or an armchair or loveseat, 

covered with a patterned fabric. [... 
 Other items: 

 A laundry basket or storage bin is sitting on a chair. 
 A small side table or nightstand covered with a floral patterned cloth. 

[...]

 

Wall Decor Detail 
 A larger artwork of dried flowers or grains or abstract design. 
 A smaller framed picture featuring red flowers in a wooden frame. 
 [...]

 

Subjective Assessment of Wall Setting 
 
Opinions on the wall setting vary. 
 Some find it well-decorated and cohesive with a balanced arrangement 

and a comfortable, homey quality. 
 Others perceive the decor as sparse and not very cohesive. The 

arrangement as somewhat cluttered and random, not being having 
aesthetically pleasing. [...] 

Variation-aware Description 

Agreement 
 The room is a living space with a cozy, traditional 

atmosphere 
 There is a small table 
 Wall decor includes framed pictures or artwork 

and small decorative elements.[...] 

Disagreement 
 There is a disagreement about the main piece of 

furniture in the room. Claude describes it as a bed, 
while Gemini mention an armchair or couch 

 The placement and cohesion of the wall decor are 
perceived differently, with some models like GPT 
and Claude finding it cohesive, while Gemini points 
out a lack of theme and harmony. [...] 

Unique Mention 
 GPT describes an armchair covered with a 

patterned fabric 
 Gemini specifically mentions several unique wall 

ornaments like a hanging tassel 
 Claude notes that the room is traditional or vintage 

in style. [...] 

Variation Summary 

I7(Home) 

Gemini GPT Claude 

A Input Image-Prompt Pair 

B Descriptions from MLLMs 

C D 

Figure 2: (A) Input image and prompt. (B) Raw image descriptions from 3 MLLMs (GPT-4o, Gemini-1.5-Pro, Claude-3.7-Sonnet). 
(C) Variation-aware description aggregates all model outputs into a hierarchical markdown. Major variations are highlighted 

in indigo . (D) Variation summary further surfaces key agreements, disagreements, and unique mentions across models. 

all original model-generated descriptions in a table for side-by-
side comparison. The variation-aware description (Figure 2C) 
presents an aggregated detail summary in a hierarchical, coherent 
markdown format to support a detailed understanding of variations. 
The variation summary (Figure 2D) builds on the aggregated sum-
mary by explicitly highlighting areas of agreement, disagreement, 
and unique mentions across models to support quick surface of key 
variations across all descriptions. 

In the variation-aware description, users can toggle how the 
degree of support for variants is displayed (Table 2). One option 
shows all variations along with their sources (e.g., “A small side 
table (3 of 3 GPT, 2 of 3 Gemini) or a nightstand (1 of 3 Claude)” ), 
which preserves transparency and attribution. Alternatively, users 
can view only the relative frequency of agreement (e.g., “A small 
side table (56%) or a nightstand (11%)” ), natural language indicators 
(e.g., “A small side table (moderately supported) or a night stand 
(poorly supported)” ), or choose to hide this information entirely. 

3.2.2 Automatic Variation Summary Pipeline. We select 3 state-of-
the-art MLLMs, namely GPT-4o, Claude 3.7 Sonnet, and Gemini 
1.5 Pro, to generate image descriptions. Our selection rationale 
was based on their relevance to visual access technologies and 
strong visual understanding capabilities. GPT-4o powers the Be My 
AI application [2]. Gemini-1.5-Pro is the advanced version of the 
model powering Google’s Talkback screen reader and offers limited 
free access [4]. Claude-3.7-Sonnet is an another representative 
recent model with strong reasoning abilities [7]. 

We then generate the variation-aware description based on the 
MLLM-generated image descriptions (Figure 1). We employ Chain-
of-Thought [75] and few-shot prompting techniques to instruct 
Gemini-2.5-pro to decompose each description into atomic facts 
and reassemble them into coherent, logically structured text. For 

instance, statements like “a person is wearing a red shirt”, “the indi-
vidual has on a crimson top”, and “someone dressed in red” all describe 
the same attribute using different surface forms. Facts that refer to 
the same aspect but disagree with each other, such as “the shirt is 
red” and “the shirt is orange”, are clustered together. Within each 
cluster, we combine atomic facts about the same subject into single 
sentences. When variations of a fact exist, we concatenate them 
using “or”. These grouped facts are then merged into paragraphs, 
ensuring that all distinct claims are retained. We annotate differ-
ences between model-generated facts and preserve metadata about 
the source model and original response. We instruct the model to 
output the summary in markdown format to support BLV users 
easily navigating the descriptions hierarchically. Finally, we trans-
form the variation-aware description into a more concise variation 
summary that highlights agreements, disagreements, and unique 
mentions across models. 

3.2.3 Implementation. The prototype’s frontend is built using Re-
act, and the backend runs on a Python Flask server. We followed 
the guidelines of W3C [73] and tested the compatibility with all 
three major screen readers: NVDA, JAWS, and VoiceOver. Major 
prompts used in the study are provided in the Appendix. 

4 User Study 
We conducted a within-subject study with 15 BLV participants to 
investigate how surfacing variations in MLLM-generated image 
descriptions impacts BLV users’ ability to recognize unreliable 
claims in MLLM responses and their perceived reliability of MLLM 
responses. 
RQ1: What is the impact of surfacing variations on BLV users’ 

ability to recognize unreliable claims and their percieved 
reliability of MLLM responses? 



ASSETS ’25, October 26–29, 2025, Denver, CO, USA Meng Chen, Akhil Iyer, and Amy Pavel 

None Language Percentage Source 

There are two white chairs on the left 
and a grey sofa on the right. At the 
center there is a white coffee table 
with a marble or glass or wood top 
and a gold base. There is a built-in 
shelf on the back wall with 
decorative items, like books and a
television. 

There are two white (well-supported) 
chairs on the left and a grey sofa on 
the right. At the center there is a 
white coffee table with a marble 
(moderately supported) or glass 
(poorly supported) or wood (very 
little support) top and a gold base. 
There is a built-in shelf on the back 
wall with decorative items, like books 
(moderately supported) and a 
television (moderately supported). 

There are two white (100%) chairs on 
the left and a grey sofa on the right. 
At the center there is a white coffee 
table with a marble (56%) or glass 
(33%) or wood (11%) top and a gold 
base. There is a built-in shelf on the 
back wall with decorative items, like 
books (33%) and a television (33%). 

There are two white (3 of 3 GPT, 3 of 
3 Gemini, 3 of 3 Claude) chairs on the 
left and a grey sofa on the right. At 
the center there is a white coffee 
table with a marble (3 of 3 GPT, 2 of 3 
Gemini) or glass (3 of 3 Claude) or 
wood (1 of 3 Gemini) top and a gold 
base. There is a built-in shelf on the 
back wall with decorative items, like 
books (3 of 3 GPT) and a television (3 
of 3 Gemini). 

Table 2: Variation-aware description without support indicator and with three variant support indicators we designed (Language, 
Percentage, Source). Agreements (top, green), disagreements (middle, red), and unique mentions (bottom, blue) are highlighted. 

RQ2: What are effective design strategies for surfacing variations 
in MLLM-generated image descriptions for screen reader 
users? 

RQ3: What are the potential use cases, benefits, and limitations of 
surfacing variations in image descriptions for BLV users? 

4.1 Participants 
We recruited 15 BLV participants who regularly use screen readers 
to access online content and have prior experience with MLLM-
powered visual access tools for image descriptions (Table 3). Par-
ticipants were recruited through BLV community mailing lists. 
They reported using a variety of screen readers (e.g., NVDA, Talk-
Back, JAWS, and VoiceOver) and have rich experiences with diverse 
MLLM-powered tools (e.g., Be My AI, AccessAI, and PiccyBot). They 
use these tools across diverse scenarios, including interpreting im-
ages in messages and on social media, selecting outfits, reading text 
and numbers in books and professional documents. Among our 
participants, 9 were totally blind, and 6 had some degree of light 
perception. Participant ranged from 22 to 57 years old. 

We asked participants about their past experiences with AI-
generated image descriptions. They use these tools across diverse 
scenarios, including interpreting images in messages and on social 
media, selecting outfits, and reading text and numbers in books and 
professional documents. On a 7-point scale (1 = not reliable at all, 7 
= very reliable), participants rated the overall reliability of MLLM-
generated image descriptions at 4.56 on average (SD = 1.09). While 
many participants appreciated the convenience these tools offer, 
several emphasized the importance of fact-checking in high-stakes 
situations. Participants with more experience using MLLM-powered 
tools were also more aware of common error patterns. For example, 
P2 noted, “Be My AI was really bad at numbers in the beginning, but 
now it seems to be much better.” Participants fact-check by retaking 
photos, using multiple tools for comparison, and asking others for 
verification, which aligns with findings from prior work [13]. 

4.2 Materials 
We selected 9 challenging image–prompt pairs that include am-
biguity and reflect common use scenarios for BLV MLLM users 
(Figure 3). 6 images were selected from the VizWiz dataset, and 3 

Figure 3: Images used in the study with corresponding name, 
label, and category. 

were selected from public threads on Reddit. The VizWiz dataset 
contains images and questions collected directly from BLV users, 
making representative real-world use cases [22]. However, this 
dataset is relatively dated and lacks coverage of diagrams [80] and 
social media content that BLV users increasingly engage with [19]. 
To address this gap, we selected 3 images from popular Reddit 
thread posts that contain minimal accompanying text. Details of 
these images can be found in Table 8. We categorized the selected 
images based on three primary sources of ambiguity that are likely 
to induce variation in MLLM-generated image descriptions: 

Model limitation: MLLMs still have imperfect performance for 
certain tasks such as spatial reasoning and thus produce misinter-
pretations of relative positions, shapes, or layouts in structured 
visuals like maps and graphs [55, 57]. 
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PID Age Gender Visual Impairment Onset Screen Reader(s) Prior MLLM-Powered Tool Use 

1 41 M Totally blind Birth JAWS Be My AI, ChatGPT 
2 24 F Light perception Birth VoiceOver Be My AI, PiccyBot, Seeing AI 
3 33 M Totally blind Birth JAWS, NVDA, Chrome, Talkback, VoiceOver AccessAI, Be My AI, ChatGPT, Claude, PiccyBot 
4 32 M Totally blind Birth JAWS, VoiceOver Be My AI 
5 33 M Totally blind 17 VoiceOver Be My AI, Seeing AI 
6 30 F Light perception Birth TalkBack, VoiceOver, NVDA, JAWS Be My AI, OOrion, Seeing AI 
7 22 M Totally blind Birth VoiceOver AccessAI, Be My AI, ChatGPT, Claude, Gemini, Grok 
8 39 F Light Perception born VoiceOver AccessAI, Be My AI, ChatGPT, Meta Rayban, Seeing AI 
9 46 F Totally blind 2 JAWS, NVDA Be My AI, ChatGPT 
10 30 M Totally blind 5 JAWS, NVDA, VoiceOver AccessAI, Be My AI, ChatGPT, Gemini, Maestro, Seeing AI 
11 29 F Light perception Birth JAWS, NVDA, VoiceOver Be My AI, ChatGPT, EnvisionA11y 
12 57 F Light perception Birth JAWS, NVDA, VoiceOver, Narrator AccessAI, Be My AI, ChatGPT, Gemini, Picture Smart w/ JAWS 
13 35 F Light perception Birth JAWS, NVDA, VoiceOver, Narrator AccessAI, Be My AI, ChatGPT, PiccyBot, Seeing AI 
14 50 M Light perception 9 JAWS, VoiceOver, NVDA AccessAI, Be My AI, ChatGPT, Gemini, NotebookLM 
15 55 F Totally blind Birth JAWS, NVDA, VoiceOver, Talkback Vision AI Assistant 

Table 3: Participant details for BLV participants in the user study including their participant ID, age, gender self-described 
visual impairment, age of onset, and prior use of screen reader(s) and MLLM-powered tools. 

Image quality: Images taken by blind people are often poorly 
cropped, blurry, or incorrectly oriented [38]. Even sighted users 
may struggle to interpret such images, and models similarly may 
hallucinate or make incorrect inferences [23, 42] for unclear images. 

Subjectivity: Tasks that involve evaluating fashion, room aesthet-
ics, or pet appearance introduce ambiguity, as humans may dis-
agree [19]. 

4.3 Task 
In this study, participants were asked to identify potentially un-
reliable parts of MLLM-generated image descriptions. We defined 
a part of the description as unreliable if it fell into one of the fol-
lowing categories: (1) incorrect, or the contains information that 
is likely false, (2) speculative, or the claim includes information 
that cannot be verified from the image alone, and (3) opinionated, 
or the claim reflects a subjective opinion. Each image was paired 
with a standardized prompt structure: “Describe [...]” followed by a 
targeted visual reasoning question (e.g., “Describe this object. What 
is inside the container?” ) to ensure MLLM-generated descriptions 
were rich in content and aligned with task-specific goals. For each 
image, participants were first presented with a hypothetical sce-
nario (e.g., “You found a bottle, but you are not sure what it is.” ) along 
with the exact prompt used to generate the description. 

Participants were then shown one of three description condi-
tions: 

(1) Single: A single MLLM-generated description; 
(2) List: A list of 9 descriptions generated from 3 trials of 3 

MLLMs; 
(3) Ours: Variation-aware description and variation summary 

generated based on the same 9 descriptions. 

For each image, participants had up to 4 minutes to verbally 
report any unreliable parts of the description(s) and explain their 
reasoning. Afterward, they answered questions about their percep-
tion of the description’s quality [53], information coverage [53], 
and trustworthiness [32]. 

4.4 Procedure 
Study setup and pre-study questionnaire (10 minutes). Each study 
session lasted 1.5 hours and was conducted one-on-one over Zoom. 
The study protocol was approved by our institution’s IRB, and par-
ticipants received $30 USD per hour as compensation for their time. 
The study began with a pre-study questionnaire on demographic 
information, experience in MLLM-powered visual access tools, and 
scenarios where they are using these tools. We also asked partici-
pants about their current level of trust in MLLM-generated image 
descriptions and when and how they fact-check such descriptions. 

Task (60 minutes). We shared a secure link to our web-based task 
interface with each participant. At the beginning of the session, 
we walked participants through a 5-minute tutorial to demonstrate 
the interface and explain the different presentation styles. Partici-
pants then evaluated the reliability of image descriptions generated 
for each of our 9 pre-selected images, consisting of 3 images for 
each of the 3 ambiguity sources (model limitation, image quality, 
and subjectivity). For each image, participants used one of three 
description conditions (single, list, ours), and we counterbalanced 
description conditions across the three ambiguity sources such that 
participants used each description condition 3 times, once for each 
ambiguity source. We randomized the sequence of images for each 
participant. We randomized the image sequence for every partici-
pant. For each image, participants had up to 4 minutes to read the 
descriptions and complete a Likert-scale questionnaire. 

Open-ended system use and semi-structured interview (20 minutes). 
After the task, participants uploaded up to 2 images of their choice 
to try our interface on the scenarios that they think variations will 
be useful. They freely explored different presentation styles and pro-
vided open-ended feedback. To conclude the session, we conducted 
a 10-minute semi-structured interview. Participants reflected on the 
strengths and limitations of variation-aware descriptions, shared 
their thoughts on the interface designs, and discussed how such 
tools could support their everyday lives. 
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Figure 4: Left: average identified unreliable claims reported by participants overall and in each image category. Right: average 
perceived reliability rating (1 = not reliable at all, 7 = most reliable) overall and in each image category. Error bars represent 
a 95% confidence interval. We applied the Friedman test followed by pairwise Wilcoxon signed-rank tests with Bonferroni 
correction. Significance is marked as * 𝑝 < 0.05, ** 𝑝 < 0.01, and *** 𝑝 < 0.001. 

4.5 Analysis 
We adopted a mixed-methods approach to analyze participants’ 
responses. Two researchers categorized the participant-identified 
unreliable claims into one of the three categories from Section 4.3 in-
dependently and met to resolve discrepancies. We also categorized 
incorrect and speculative claims as either a true positive (correctly 
identified) or a false positive (incorrectly identified) by examining 
the claim and image together (Table 4). Finally, we categorized 
comments that did not fit into any categories as irrelevant (e.g. “I 
feel like something’s missing” ). We separately analyzed transcribed 
comments for identifying unreliable claims (during the task) and 
from the semi-structured interview (after the task). For both, two re-
searchers independently performed open coding on the transcripts 
and observation notes, clustering codes with affinity diagrams. For 
the former, we identified major reasons for identifying unreliable 
claims (Table 5). For the latter, our codes mirrored the interview 
questions (e.g., benefits of variations). For the quantitative analysis, 
one researcher counted and categorized the number of identified 
unreliable claims across the three description conditions (Single, 
List, Ours). The same researcher extracted Likert-scale ratings of 
perceived reliability, computed descriptive statistics, and performed 
Friedman tests with post-hoc Wilcoxon signed-rank comparisons 
to check condition effects. 

5 Results 
Overall, surfacing variations in MLLM responses increased 
the number of unreliable claims identified (RQ1) in MLLM 
descriptions by 4.9x for ours (M = 2.62 , SD = 1.72) or 4.2x for list (M 
= 2.24, SD = 1.52) compared to presenting a single description (M 
= 0.53, SD = 0.73) (Tabe 4). A Friedman’s test indicated a significant 
impact of condition on number of unreliable claims overall (𝑝 < 
0.001) with pairwise comparisons indicating a significant difference 
between ours and single (𝑝 < 0.001), and list and single (𝑝 < 0.001) 
(Figure 4). 

Surfacing variations in MLLM responses also decreased 
the perceived reliability of MLLM responses (RQ1) from 5.78 
(SD = 1.41) of 7 for a single description to 4.76 (SD = 1.61) of 7 for a 

list of descriptions and 3.93 (SD = 1.70) for ours. A Friedman’s test 
indicated a significant impact of condition on perceived reliability 
of MLLM-generated image descriptions overall (𝑝 < 0.01) with 
pairwise comparisons indicating a significant difference between 
all pairs (Figure 4). 

11 of 15 participants ranked our variation summary (ours) as their 
favorite option with 9 of 15 participants ranking variation-aware 
descriptions (ours) as their second favorite option, while only 5 
participants rated the list of descriptions (list) or a single description 
as their first or second favorite indicating strong support for our 
new aggregated variation approaches (RQ2) (Figure 5). All BLV 
participants wanted to use our variation surfacing prototype in the 
future for a variety of purposes from high-stakes scenarios such 
as assessing the path of an incoming tornado (P12) to obtaining 
subjective critiques for social media posts (P15) (RQ3). 

In the rest of this section, we share findings on how users iden-
tified unreliable information with and without variations (RQ1), 
the benefits and drawbacks of different display options in our pro-
totype sampled from our design space (RQ2), and when surfacing 
variations in MLLM descriptions mattered for BLV participants 
(RQ3). 

5.1 What Makes Image Descriptions Appear 
Unreliable? 

In our analysis of participants explanations for identifying claims as 
“unreliable,” participants predominantly take inconsistency (96% 
of all reported claims in List condition; 94% of all reported claims in 
Ours condition) as the indicator of unreliable claims when multiple 
descriptions are available, while they take lack of details as the 
major indicator (54% of all reported claims) when they assess a 
single description. 

5.1.1 Identifying unreliable claims with single descriptions. Lack 
of details is the most popular indicator. Participants frequently 
flagged descriptions that were too general or lacked reliable critical 
details. 6 participants (P1, P4, P7, P9, P10, P11) expressed frustration 
that language models often left out essential elements during the 
study. P11 said description for I6 (Medication) omitted dosage and 
ingredient details, but these are “actually what I want”. Similarly, P9 
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Model Limitation Image Quality Subjective Overall 

Single List Ours Single List Ours Single List Ours Single List Ours 

True Positive (Incorrect) 4 18 29 3 20 27 0 4 7 7 42 63 
True Positive (Speculative) 0 0 0 8 19 22 3 8 6 11 27 28 
False Positive 1 6 5 3 7 4 1 4 4 5 17 13 
Opinionated 0 1 2 0 0 0 1 11 11 1 12 13 
Irrelevant 0 1 0 0 1 0 0 1 1 0 3 1 

Total Count 5 26 36 14 47 53 5 28 29 24 101 118 
Mean 0.33 1.73 2.40 0.93 3.13 3.53 0.33 1.87 1.93 0.53 2.24 2.62 
Std. Dev. 0.49 1.03 1.30 0.70 1.55 1.51 0.82 1.60 1.98 0.73 1.52 1.72 

Table 4: Total count, means, and standard deviations of identified unreliable claims under three conditions. Counts are further 
broken down by image category (Model Limitation, Image Quality, Subjectivity) and further classified as True Positive (Incorrect 
and Speculative), False Positive, Opinionated, or Irrelevant. The highest value in each group is in bold. The lowest is underlined. 

Cause of Unreliability in Single Description Count 

Lack of Details 13 
Suggestive and Uncertain Language 5 
Prior Experience with MLLMs 4 
Others 2 

Total 24 

Table 5: Breakdown of the reasons for each unreliable claim 
reported in Single condition. 

felt confused when reading the description for I4 (Screen), “I know 
it is a graph, but why doesn’t it tell me anything about the x-axis?” 
P9 and P10 both consider length and detail information as major 
source to evaluate reliability. “If one description is picking up more 
thoroughly, the second is very sketchy, the third one is in the middle. I 
would not use the second one because it is sketchy and does not give 
me any help.” (P10) 5 of 24 unreliable claims were flagged due to 
suggestive and uncertain language (Table 5). BLV participants 
were sensitive to phrases that indicated speculation or guesswork. 
“The suggestive language makes me think...is this reliable?” (P6) Like-
wise, P12 criticized vague phrasing in the description of I6 (Card): 
“It appears to be baseball trading card. . . This description later says 
’from the Phillies baseball team,’ but why does it only use ’appears 
to be a baseball card’? Why?” On the contrary, P6 thought the de-
scription for I2 (Swiftie) is very reliable because “ it didn’t seem to 
give suggestive language. It didn’t say ‘perhaps’ or ‘there may be’, 
it sounded more factual”, yet the image contains one of the most 
factual errors. Participants also drew on prior experience with 
MLLMs to judge reliability. P3 and P10, who have relatively more 
experience in using MLLM-powered tools, were aware that models 
often struggle with numbers and choose to distrust numbers men-
tioned in image descriptions of I1 (Map). 

5.1.2 Identifying unreliable claims with variations. Participants nat-
urally looked for differences to assess reliability when multiple 
descriptions are presented. The most common strategy was to look 
for inconsistencies between descriptions. Participants utilized 
differences as a cue to identify 97 among 101 reported claims under 
List condition and 112 among 118 reported under Ours condition 

even when suggestive language and lack of specificity still exist. 
Many participants used the degree of agreement across models 
as a signal for how trustworthy a specific claim might be. As P5 
explained, “If the difference is trivial, then it should be OK, but the 
number of US ancestry from the UK jumps too much.” When vari-
ations spilt a lot, they also think it is less reliable, P12 pointed 
out, “We don’t have any strong percentages here so I wouldn’t think 
this is reliable.” Participants were also often cautious about claims 
that appeared in only one or two descriptions. When a detail was 
uniquely mentioned, it raised concerns about its reliability. “Only 
one [description] mentioned x-axis and y-axis in the image. It is what 
I need, but I’m not sure if it is correct.” (P10) However, not all unique 
mentions are necessarily errors. Some response variations simply 
reflect the model’s interpretation or attention, but participants may 
deem them as potentially incorrect information for different parts 
of the image. In complex images like I1, for example, there was so 
much information on the map that descriptions only pick up on 
some numbers that other models do not. P11 noted, “Romania was 
seen in some models, but not in other models.” and flagged it as an 
unreliable part even when the claim was correct. 

5.2 What are Effective Design Strategies for 
Surfacing Variations? 

Participants ranked the variation summary as their favorite presen-
tation style (11 of 15) and the variation-aware description as their 
second favorite one (9 of 15) because they can help them quickly 
find the unreliable claims in the image descriptions. Support indica-
tor is helpful, but it largely depends on personal preferences. Most 
participants (14 of 15) believed text is already effective in conveying 
variations, but open to alternative modalities beyond text. 7 of 15 
participants were enthusiastic about having the ability to switch 
between presentation styles based on different contexts. “It depends 
on what kind of information I want from the image. I think models 
are generally accurate on scene description so I would just like a list 
to freely surface the differences. But if the image is quantitative like 
graphs, I would want the summary.” (P7) With images for which the 
prompt is more subjective, “having them all grouped together like 
that at one time is helpful [...] I would with people getting different 
viewpoints, different perspectives from the models, and normally I 
wouldn’t have that.” (P14). 
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Figure 5: Participants’ preference on variation presentation 
style and single description. (1 = most preferred, 4 = least 
preferred) 

5.2.1 Presentation style. Participants ranked variation summary 
(Ours) the highest (M = 1.53, SD = 0.99), followed by variation-aware 
description (Ours) (M = 2.33, SD = 0.72), and list of multiple descrip-
tions (M = 3.07, SD = 1.03) (Figure 5). Single description baseline 
was the least preferred (M = 3.07, SD = 1.03). A Friedman’s test 
followed by a pairwise Wilcoxon signed-rank test with Bonferroni 
correction indicated a significant preference for variation summary 
to single description (𝑝 < 0.05). 

Variation Summary: 11 participants (P1-7, P9-11, P15) favor vari-
ation summary the most because it is concise and clear, and helps 
them “see to what extent and how different AIs are describing them” 
(P2) without “having to go through each individual description” (P6). 
P6 reflected that the agreement summary helped her quickly un-
derstand where all the models reach a consensus, so she “feels 
pretty secure about that because it is a high confidence level”. The 
disagreements summary raises their awareness of the conflicting 
information between multiple descriptions. P10 says that “you can 
look at the disagreements, check if those details don’t matter or that’s 
super relevant steers to whether you need clarification or not.” I2 
(Swiftie) is a stacked bar graph of the number of alcohol references 
Taylor Swift made in each of her albums. P11 noticed that the agree-
ment summary tells her the number of alcohol in Reputation was 
the highest, but models disagreed when it came to the references, 
so she then carefully examined the reference information. 

Variation-aware Description: 7 of 11 participants who ranked 
variation summary the first ranked variation-aware descriptions 
second (P1, P3-5, P9-10, P15) because they can learn more specific 
information about the image in depth when they find it necessary. 
P12 states “it was really nice to have all that detail, especially if it’s 
something that I’m not familiar with, but I’m trying to get a deeper 
sense and having different perspectives or different verbiage to kind 
of help build that imagery of what I’m looking at.” P10, who is a 
neuroscience PhD student, regularly interprets figures and graphs. 
He believes that “variation-aware summaries are good when I am 
looking at graphs when I need really specific pieces of information.” 

After encountering variations between multiple descriptions, 
participants appreciated the additional detail. “Before this study, I 
thought, ‘maybe I would just like something short and sweet all the 
time.’ And then I realized, ‘no, no, that’s too short.”’(P15) While many 
participants love the comprehensiveness of variation-aware descrip-
tion, others (P2, P6, P11) feel overwhelmed when going through all 

of the details. P11 felt that “the language in there might get a little 
distracting just trying to keep track of it in your head.” However, they 
also acknowledge that they can scrutinize the information better 
with this presentation style. 

List of Multiple Descriptions: 2 participants (P13, P14) ranked 
the list presentation style first because they can quickly surface 
themselves without the need to analyze the summary themselves. 
P14 appreciated that the information was organized, and having 
the ability to apply filters is great. “I would probably do one model 
at a time rather than multiple models at once.” when reading the de-
scriptions. However, the rest 13 participants unanimously pointed 
out that there was too much information to process in the list pre-
sentation style, especially for screen readers. Participants have to 
read the list format and keep track of the consistencies and incon-
sistencies as they go which creates doubt if they cannot recall all of 
the information (P4, P5, P7, P11). As a result, participants expressed 
not wanting to use the list format for simple visual questions, with 
P7 stating that “AI descriptions are long. List is way too much because 
you have to remember all of them. Do I really want to judge an SAT 
test style graph using a list?” 

5.2.2 Support Indicator. Participants showed diverse preferences 
for support indicators (Figure 6). 5 participants (P3, P5, P11, P14, 
P15) ranked the model source (M = 1.93, SD = 0.88) as their fa-
vorite because it is transparent on where models split and can have 
a better sense of the capability of each model. “I like it because I 
know why everything is supported.” (P5). Yet, they do acknowledge 
that “you hear it all the time and you need to keep a tab of the dif-
ferent disagreements or agreements” (P11). 4 participants (P7, P10, 
P12, P13) ranked percentage at the top (M = 2.13, SD = 0.99) be-
cause it is intuitive and “screen reader can handles the percentage 
indicator better” (P12). 4 participants (P1, P2, P4, P9) preferred no 
support indicator to any of three (M = 2.80, SD = 1.21) because 
it is the most “fluent” and “natural”. Only 2 participants (P6 and 
P8) ranked language as their first choice (M = 3.13, SD = 1.06) 
because it was more natural for them compared to numbers, but 
other participants deemed language as “ambiguous” (P1, P3, P11, 
P12) and “confusing” (P7). 

5.2.3 Modality. One participant (P2) explicitly expressed interest 
in representing the reliability level in other modalities while other 
participants (13 of 15) were neutral but open to other modalities 
because they believed that text can already effectively communicate 
variation information as it is “sufficient” (P14) and “easy to under-
stand” (P3). P13, who disliked modalities other than text, shared 
her struggle with interpreting the darkness sonification feature in 
Seeing AI and strongly preferred text. 

5.3 When do Variations in MLLM-generated 
Image Description Matter? 

Participants found variations most useful in high-stakes and sub-
jective scenarios. All participants expressed strong interest in read-
ing variation-aware descriptions in detail when the consequences 
of inaccuracies are serious. 14 of the 18 images that participants 
selected in the open-ended system use are high-stakes, including 
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Figure 6: Participants’ preference on support indicator styles. 
(1 = most preferred, 4 = least preferred) 

healthcare (P1, P2-1, P5, P10), appliance usage (P3), navigation 
(P6), stock price (P7-1), shopping (P2-2, P7-2, P9-1, P9-2, P11), tor-
nado path (P12), and accessibility test (P14-2) (Table 9). Participants 
also found variations helpful for their own fact-checking scenarios. 
Three participants see variation-aware descriptions as best applica-
ble for outfits (P6, P11, P2) or makeup (P12). P8 also briefly men-
tioned using these descriptions for reading insurance documents. 
P6 uniquely adds that she would find it helpful in “her day-to-day 
life with street signs.” P13 also stated finding this tool specifically 
applicable in her own life, doing “workbook work with [her] child.” 

Six of 15 (P6, P7, P8, P10, P13, P14) participants noticed the 
subjective discrepancy between different models and would love 
to understand the differences in the future. 2 of the 18 images that 
participants selected in the open-ended system use are looking for 
creative interpretation of the comic book (P14-1) and critique of 
the photo they took (P15). When reading through the descriptions 
for I9 (Dragonfly), P14 was able to get a general idea of the image 
content, so having different opinions from different models is a 
plus compared to just relying on one model. P10 frequently posts 
pictures of his life and his guide dog on social media, but he is always 
concerned about whether the picture is appropriate. “I would use 
this tool to describe my photos for social media posts. Right now, I take 
a lot of images and then upload them to ChatGPT to tell me which one 
is the best. This system tells me that one of the models says that the 
dragonfly was not in focus- very important. I would have probably 
missed it if I only used ChatGPT.” (P10) 

6 Discussion 
Our results indicate that surfacing variations (DG1 - surface vari-
ation) significantly reduces users’ perceived reliability of MLLM-
generated image descriptions (RQ1), similar to prior work dis-
playing variations in LLM answers to factual questions [27]. Our 
work surfaced variations across multiple models rather than only 
from one model in response to existing practice [13]. BLV partici-
pants thus used our system to identify model patterns of strengths 
and weaknesses to inform their future model use. Similar to prior 
work that aggregated and visualized variations from multiple LLM-
generated answers for sighted people [52], we aggregated MLLM-
generated image descriptions into variation-aware description and 
variation summary to support BLV people efficiently noticing unre-
liable claims (DG2 - support efficient comprehension of variations). 

As we uniquely designed our system for screen reader use, we pro-
vided a novel variation summary for a quick overview (most pre-
ferred by 11 of 15 participants), used hierarchical variation-aware 
descriptions to support ease of navigation (2nd most preferred by 
9 of 15 participants) (RQ2), and provided customization for user 
control (DG3 - allow customization). We can directly apply such 
designs to support both BLV and sighted users comparing MLLM 
responses. 

In this section, we present implications for effective use of vari-
ations in MLLM-generated image descriptions in high-stakes and 
subjective scenarios (RQ3). We also discuss research opportuni-
ties for extending our method to other media formats and MLLM-
powered applications in accessibility. 

6.1 Usage of Variations in MLLM-generated 
Image Descriptions 

6.1.1 Empower BLV people to surface capabilities and limitations 
of MLLMs. MacLeod et al. [58] found that BLV people assumed 
automatically generated captures were correct. P7 commented that 
“AI is very popular in the blind community, so some people create 
a ‘God’ image, especially for those they don’t know [AI] very well”. 
While there is research on quantifying uncertainty and reducing 
uncertainty in LLM output [47, 56], we explored how to effectively 
communicate the uncertainty in MLLM-generated image descrip-
tions to BLV people. The absence of a mechanism to communicate 
errors in current MLLM-powered access technologies may lead 
to users’ over-reliance on AI. Since MLLMs can create seemingly 
correct yet hallucinated details, users may rationalize those details 
and build an inaccurate mental model of the technology. From RQ1, 
we found that comparing variations from multiple models is an 
effective design to support BLV participants in finding more un-
reliable claims, and thus calibrates their understanding of models’ 
capabilities. When reading descriptions for I5 (Medication), P10 said 
that “one model says the bottle is squared and another model says it is 
rounded, but I could tell its shape if I were holding the bottle. [...] If the 
bottle is squared but the model says the bottle is rounded, I’m going to 
be biased against it”. Building on our findings, future research can 
explore other interfaces and algorithms to reveal the model’s uncer-
tainty and capabilities to support BLV people to calibrate their level 
of skepticism and understand the performance of different models. 
For example, access technologies can curate model “nutrition labels” 
that surface strengths and weaknesses in aggregate like prior work 
in building application privacy labels [1, 46]. 

6.1.2 Provide comprehensive understanding of images. In our do-
main of MLLM descriptions, variations let participants gain a more 
holistic understanding of images. Participants reported that differ-
ent models often provided useful complementary information, and 
they expressed surprise and appreciation when models provided dif-
fering subjective opinions. P2 said she “gets more information when 
having multiple image descriptions and wants background informa-
tion. [...] It is interesting to see how AIs see things differently, just like 
sighted people.” Participants found that mixed opinions from mul-
tiple sources are particularly helpful in subjective scenarios (e.g., 
choosing an outfit, online shopping, etc.). Future systems could 
allow users to define or generate AI personae to further illuminate 
subjective variation in image descriptions, like prior work that used 
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personae to provide critiques on writing [18] and video [28]. As 
BLV people also use models to describe appearances of people [20], 
we tested our system on images with people, but the models we 
used were conservative in describing the appearances of people 
- they refused to describe people (e.g.,GPT-4o: “I can’t help with 
identifying or describing people in images.” ) or provided vague de-
scriptions (e.g., Claude-3.7-Sonnet:“The person has well-defined 
eyebrows.” and Gemini-1.5-Pro: “She has a fair complexion.” ), such 
that the variations were also limited. Participants in our study did 
not opt to test our system on people. Future research may apply 
our system to less constrained models or use our system to surface 
diverse model constraints. 

6.2 Implications for Accessible Interfaces to 
Surface Variations 

We designed our variation-aware descriptions (Figure 2C) and vari-
ation summaries (Figure 2D) to address the challenge of linear 
progression when BLV people access multiple image descriptions. 
Participants found the variation-aware description informative and 
in-depth, while the variation summaries were concise and useful 
for quickly understanding the extent of differences across MLLMs. 
We reflect on feedback on our design and discuss opportunities for 
designing accessible interfaces to surface variations. 

Dynamic Presentation of Variations: As images contain much 
information, not all details are relevant to users’ interests. Partic-
ipants found variations to be most useful when the descriptions 
were more divergent and less useful when the descriptions were 
more similar. Future work will provide options to prioritize display-
ing variations based on the content of the image (high risk vs. low 
risk), variations (highly diverse vs. similar, subjective vs. factual), 
or relevance (crucial vs. trivial). We plan to deploy variation-aware 
descriptions in the wild to further understand usage scenarios and 
user preferences in context. 

Interactions to Provide Feedback: Participants (P6, P9, P12) sug-
gest having a mechanism to provide feedback to the model. “I hope 
the system could have a place to ask follow-up questions. I assume 
once you get to know one model better, it can also learn better how 
to explain to you.” (P9) Future work could design interactions that 
enable BLV users to provide feedback informed by variation. The 
feedback could be used to fine-tune models for personalized image 
description systems through reinforcement learning from human 
feedback (RLHF), similar to prior work on personalizing language 
models from human feedback [54]. 

Presentation Modalities and Styles: Most participants in our 
study felt that text was an effective medium to communicate varia-
tions, yet open to multimodal presentation of variations. Like prior 
work using audio to broaden representations of memes [34], fu-
ture work could explore audio pitch as indicators of the degree 
of variation, or haptic nudges as alerts of conflicting descriptions 
during navigation. In addition, text presentation styles could adapt 
to users’ preferences or situational context. For example, users can 
set a threshold of degree of variation to reduce the cognitive burden 
of reading long paragraphs by filtering out trivial variations. 

6.3 Beyond Image Descriptions 
Our system currently supports surfacing variations in static image 
descriptions. We see opportunities and challenges for extending 
this method to live or recorded video descriptions and computer 
use agents that operate interfaces based on text prompts. 

6.3.1 Video. Producing audio descriptions for complex videos 
within a short timeframe is a widely recognized challenge [64, 70]. 
If we were to apply our system to recorded videos, we could let 
users pause and directly use our interface to explore variations 
in text descriptions of individual frames, scenes, or the video as a 
whole. However, conveying variation in real-time video streams 
may be difficult, as reading out variations requires time on an al-
ready time-limited medium. Thus, we will also complement audio 
approaches (e.g., a higher pitch, softer voice, or questioning sound) 
with text descriptions to indicate potentially unreliable claims in 
real-time for BLV users. 

6.3.2 Computer Use Agent. MLLM-powered computer use agents 
like OpenAI Operator [8] and Taxy AI [9] can perceive on-screen 
information and autonomously carry out actions (e.g., clicking, 
typing, and scrolling) to achieve a user’s goal. This shows new op-
portunities for BLV people to complete complex web tasks simply 
via high-level natural language instructions (e.g., “buy a plane ticket 
from New York to London” ) [48, 65]. Future accessible computer use 
agents can extend our approach to help BLV people surface and 
compare the variations in multiple branches for the same action 
by summarizing how branches are progressing. Our method could 
also calibrate users’ perceived reliability of agents in high-stakes 
scenarios. For example, when users ask a computer use agent to sub-
mit a travel reimbursement form on a complex and poorly labeled 
website, they could try tracing multiple models and alert steps with 
high uncertainty and disagreement. Users could then review those 
steps before committing. 

7 Conclusion 
In this work, we outlined a design space based on prior work for sur-
facing variations in MLLM descriptions, and then we built a proto-
type to test these design ideas. Our user study findings demonstrate 
that surfacing variations across MLLM-generated image descrip-
tions significantly improves blind and low vision users’ ability to 
identify unreliable information and decreases their perceived relia-
bility of MLLM descriptions. By designing interfaces that efficiently 
surface variations through aggregated summaries rather than sim-
ply listing multiple descriptions, we enable BLV users to quickly 
identify potential errors without the cognitive burden of compar-
ing multiple lengthy descriptions. The strong preference for all 
variation-aware approaches (list, variation-aware description, vari-
ation summary) over traditional single descriptions demonstrates 
strong user support for learning about potential unreliable content 
in MLLM descriptions. As MLLMs become increasingly integrated 
into visual access technologies for BLV people, designing systems 
that support appropriate trust calibration becomes essential. Future 
work should explore how these approaches might be integrated 
into existing accessibility tools and expanded to other modalities 
beyond image descriptions. 
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A Pipeline Prompts 

You are an expert in reformatting and combining input descriptions into coherent, hierarchical paragraphs that show detail-level 
differences across models. 

1. GROUP FACTS 
– Each description contains multiple atomic facts (self-contained claims). 
– Combine atomic facts about the same subject into a single coherent sentence. 
– If variant statements describe the same fact, concatenate using “or”. 

2. PARAGRAPH FORMATION 
– Merge grouped facts into comprehensive paragraphs. 
– Include all single and unique claims. 

3. MODEL DIFFERENCES 
– Annotate differences with counts: (n_A of N_A ModelA, n_B of N_B ModelB). 
– Example: (2 of 3 GPT, 3 of 3 Gemini). 
– If a model does not support a fact, omit it from the parentheses. 

# INPUT FORMAT 
Input: list of descriptions; each has atomic facts, response ID, and source model. 
There are {{#responses}} responses total: {{#model specific responses}}. 
When grouping facts within one response, DO NOT double count. 
Use source indicator format: x of {{#trials}} (where x = {{values}}). 

# OUTPUT FORMAT 
– Indicate model differences with the specified counting format. 
– Never mention a model’s name in the sentences of the main paragraphs; only in parentheses. 
– Highlight unique / singleton claims. 
– Return the revised description directly (no leading phrases like “below is”). 
– Do NOT include headings such as “PARAGRAPH:”. 
– Produce hierarchical paragraphs: each begins with a short bullet-like summary phrase, followed by indented detail lines (>= 2 hierarchy 
levels). 
– Order from high-level information to finer-grained detail. 

# EXAMPLES 
{{Few-shot example input}} 
{{Few-shot example output}} 

Table 6: Aggregation prompt for grouping atomic facts, forming hierarchical paragraphs, and annotating model differences. 

You are an expert in summarization and comparative analysis. Given a multi-model summary of descriptions of the same image (models: 
{{model_lists}}), produce a structured comparison of similarities, differences, and unique points. 

1. Synthesize all key observations across models in a coherent paragraph form. 
2. Start with high-level observations (image type, layout, purpose) before detailed attributes (counts, colors, labels). 
3. Identify and group statements agreed upon across models. 
4. In the agreements section, do not include alternate variants; choose the common canonical form (e.g., “the shirt is blue”; NOT “blue, 
possibly cyan”). 
5. Clearly highlight disagreements with inline references to the differing model outputs. 
6. Note any uniquely mentioned information; attribute to the specific model(s). 
7. Mention model names only when discussing disagreements or unique points. 
8. Provide a Markdown bullet list summarizing each section. 
9. Be as comprehensive as possible across agreements, disagreements, uniqueness. 
10. Use only information explicitly present in the input. No inference. 

# REQUIRED OUTPUT CONTENT 
Return both a narrative summary (hierarchical markdown paragraphs with inline model agreement annotations) and a JSON object: 
{ 
“similarity”: “Summary of similar points across models.”, 
“disagreement”: “Summary of disagreements between models.”, 
“unique mentions”: “Summary of unique or model-specific observations.” 

} 

# EXAMPLES 
{{Few-shot example input}} 
{{Few-shot example output}} 

Table 7: Summary prompt for cross-model comparison: agreements, disagreements, and unique mentions. 
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B Study Image Details 

ID Name Category Task Prompt Alt Text / Caption VizWiz Q. / Post Title 

I1 Map Model limitation Describe 10 numbers 
shown in this map. Which 
country has the highest 
number of US Americans 
with ancestry? 

r/europe—Number of US 
Americans with ancestry from 
every European country 

Number of US Americans 
with Ancestry from Every 
European Country 

I2 Swiftie Model limitation Describe all of the informa-
tion in the graph. Which 
word appears in three of 
Taylor Swift’s albums? 

r/dataisbeautiful—Alcohol ref-
erences in Taylor Swift lyrics, 
by album (e.g., bar, beer, wine) 

Taylor Swift’s Newfound 
Infatuation with Alcohol 
[OC] 

I3 Washing 
Machine 

Model limitation Describe the washing ma-
chine panel. How can I 
twist the dial to the heavy-
load end? 

A dial is shown on a white 
washing machine with hoses 
behind it/left half-turn 

Do I need to go right or 
left to get to the heavy-load 
end? About how far do you 
think? 

I4 Screen Image quality Describe the chart. What is 
the max value of the y-axis? 

A graph comparing events 
like Hurricane Katrina and the 
2005 Global Financial Crisis 

“Yes, I know this may not 
be possible, but I’d like a de-
scription of the chart if pos-
sible.” 

I5 Medication Image quality Describe all of the informa-
tion on the bottle. What is 
the brand? 

A bottle of supple-
ment/medicine on a bathroom 
sink/cranberry 

What kind of pills are 
these? 

I6 Card Image quality Describe the card. What is 
this card? 

A baseball card picturing 
Padres player Greg Riddoch 

Can you tell me what this 
card is? If it’s a baseball 
or football card, and the 
name? 

I7 Home Subjectivity Describe the room setting. 
Does this wall setting look 
okay? 

A room with pictures, a ta-
ble lamp, chairs, and a laundry 
basket—yes 

Does this wall setting look 
okay on my wall? 

I8 Outfit Subjectivity Describe the pants and the 
shirt. Do they match? 

Green, black—yes What color are the pants 
and shirt, and do they 
match? 

I9 Dragonfly Subjectivity Describe the content, style, 
and atmosphere. Is this a 
pretty image? 

r/photocritique—A paraglider 
flies over the beach 

Noob photographer here, 
thoughts? 

Table 8: Images used in the study with associated category, prompts, captions, and original questions. 
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C Image-Prompt Pairs in Open-end Use Session 

ID Image Prompt 

P1 Medication Information what is this? read the image. 

P2 Health Info Graphics Describe the image in detail. 
Scribeme Advertisement Describe the image in detail.

P3 Control Panel of Dishwasher Describe the control panel of this dishwasher. Explain where each button is on the 
screen. 

P4 Container Recognition Describe this photo. 

P5 Medication Dosage what is the correct dosage and how many times should it be taken? 

P6 Navigation how would I pass here? Only provide direction and distance steps in bullet points. 

P7 Stock What stocks are shown? 
Record Player What model is it? Where is the needle? Describe the record player in more detail. 

P8 Room Is this a TV? 

P9 Bell how many bells are on the collar? what color is the collar and bell? is the bell and tag 
on different clasps? how long is the bell? 

Garlin what color is the garlin? what design is on the garlin? what decorations is it being used 
for? 

P10 Wound Finger Provide a short description and explanation. Is my wound on my finger healing? 

P11 iPhone describe the iPhone. What color is it? How large is it? What are its length and width? 

P12 Tornado Path Describe the map. List the cities in each risk level. 

P13* — — 

P14 Comic Book describe the pages in a prose, novel-style manner. 
Screen If my resizing of the text to 200% within the browser has caused any content to overlap 

or require lateral scrolling, describe the issue. 

P15 Personal Photo Provide a critique of the photo I took. 

Table 9: Images and prompts that participants submitted during the open-ended use session (columns shown: Participant ID, 
Image, and Prompt). *: P13 was uncomfortable uploading an image and chose to opt out of this session. 
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